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Asymptotic step profiles from a nonlinear growth equation for vicinal surfaces
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We study a recently proposed nonlinear evolution equation describing the collective step meander on a
vicinal surface subject to the Bales-Zangwill growth instabili. Pierre-Louiset al, Phys. Rev. Lett80,
4221(1998]. A careful numerical analysis shows that the dynamically selected step profile consists of sloped
segments, given by an inverse error function and steepeniglt, aghich are matched to pieces of a stationary
(time-independentsolution describing the maxima and minima. The effect of smoothening by step-edge
diffusion is included heuristically, and a one-parameter family of evolution equations is introduced that con-
tains relaxation by step-edge diffusion and by attachment-detachment as special cases. The question of the
persistence of an initially imposed meander wavelength is investigated in relation to recent experiments.

PACS numbgs): 05.70.Ln, 81.10.Aj, 68.35.Bs

[. INTRODUCTION minima of . The latter is surprising because the second term
on the right-hand side of Eql) would be expected to sup-
Ten years ago, Bales and Zangwill] predicted that a press such rapid variations of the step curvature.
growing vicinal surface should undergo a step meandering Here we revisit the problem using a more accurate nu-
instability when kinetic step-edge barriers suppress the atnerical algorithm13]. We demonstrate that the step profile
tachment of atoms to descending st¢@§ The instability remains smooth near maxima and minima, where it ap-
has meanwhile been observed in experimegi@g and proaches asymptotically stationary (time-independentso-
Monte Carlo simulationg5], and a number of theoretical lution of Eq.(1), while the sides of the profile follow a sepa-
studies have been devoted to the nonlinear evolution of theable solution with an amplitude of ordeft. The matching
surface both in the presenp@] and absencEb,7] of desorp-  of the two solutions occurs near the point of maximum slope.
tion [8]. We further show heuristically how the effect of step-edge
Since linear stability analysis shows the in-phase mode ofliffusion can be included in the theory, and introduce a gen-
the collective step meander to be the most unstf®lethe  eralized evolution equation that contains edge diffusion and
two-dimensional surface morphology can be represented battachment-detachment kinetics as special cases. Finally, we
a one-dimensional functiog(x,t) describing the displace- address the question of to what extent an initially imposed
ment of the common step profile from the flat straight refer-meander wavelength different frox, is preserved under the
ence configuratiod =0, with thex axis oriented along the time evolution. This is relevant in view of the recent experi-
step [10]. For the case of infinite step-edge barriers,ments of Maroutiaret al. [4].
attachment-detachment kinetics and no desorption, the non-

linear evolution equation Il. SHAPE SELECTION
al, i o Before presenting the numerical results, we recapitulate
Li=— >+ 5 PN (1) the two classes of analytic solutions to HG) that were
1+4 1+4G(A+5077, found in Ref[7]. Stationarysolutions are obtained by setting

the mass current along the stighe quantity inside to curly

was proposed in Ref7] (subscripts denote derivatijedt  brackets on the right-hand side of Hd)] to zero. In terms
can be derived from the Burton-Cabrera-Frank theory ofof m(x)={¢,/vy1+ §X2, the stationarity condition reduces to
growth on vicinal surfacegl1] using a singular multiscale Newton’s equationBd?m/dx?=—dU/dm for a classical
expansion[7,12] in €2, wheree=QF/?/D is the Pelet particle of mass 8 moving in the potential U(m)
number. Herd~ is the deposition fluxD, the in-plane surface = — «\/1—m?, which can be solved by quadratures. One
diffusion coefficient/, the nominal step spacing, afi the  thus obtains a one-parameter family of periodic profiles
atomic area. The coefficients in E@l) are given bya  (y(x) that are most conveniently parametrized by the
=QOF /%2 and B=Q?D/ yCeq/KgT, With y and ceq refer-  maximum slopeS=max(,, and which have been described
ring to the step stiffness and the equilibrium adatom densitypreviously in the context of a different surface evolution
respectively. equation[15]. The amplitudeA(S) is an increasing function

According to Eq(1), the straight step is linearly unstable of S while the wavelength\ (S) decreases with increasing
against perturbations with wavelengths larger thep S starting out atA(0)=\.. For S—o finite limiting
=2mBla, with a fastest growing wavelength,=v2\..  values A(*)=\8Bla, A(*)=\2mpla T(3/4)T(5/4)
To explore the nonlinear regime, in Rdf/] a numerical ~0.5393527 ..\, are approached.
integration of Eq(1) was carried out that showed an increase The separablesolution of interest read¥,14]
of the meander amplitude ag at fixed wavelength,, as
well as the formation of spike singularities at maxima and g(x,t)=2\/Eerf*1(1—4|x|/)\s), 2
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the separable solutiof2) with s equal to the total meander wave-
I ha=1 ~2\,.
(; 200 | engthA =188/ a=~2\,
ishes as Nt. Since the slope of Eq2) increases monotoni-
100 f cally upon approaching an extremum while it decreases for
: the stationary profiles, the matching of the two solutions oc-
curs near the point of maximum slope. Re# o the slope of
. the separable solution diverges, hence the cap profile ap-
0'00_0 10.0 20.0 30.0 proaches the limiting stationary solutiofi.(x), and the

X length of the cap become's(«)/2. The rescaled step profile
_ _ _ L(x,t)/\/t approaches an invariant shape in which the cap
FIG. 1. The evolution of the step profile starting from a flat gppears as a flat facet. The wavelenythof the separable

initial condition with small random fluctuations. The upper figure gg|ytion depends on the cap length and on the total meander
shows the case of attachment-detachment kingfigs(1)] at times wavelengthx, and is fixed by mass balance requirements

t=236,64,110,183; the lower figure, the case of edge diffufiitm 12]: for large total wavelenath.—\ (see Fi
(4) with n=1/2] at timest=20,60,112,200. Subsequent profiles[ I 9 gths—A ( g. 2

have been shifted in thé direction. In all figures spatial variables

have been scaled by,/2m— VBla and time byg/ a?. lll. STEP-EDGE DIFFUSION AND A GENERALIZED
EVOLUTION EQUATION

— N /2<X<\g/2, where erf(z)=(2/\/?)fédy e*yz, and the On many fcc metal surfaces, diffusion along step edges is
wavelength\¢ is arbitrary. Equation(2) solves Eq.(1) ex- the fastest kinetic process, which therefore provides the
actly in the limitt—c, when the second term on the right- dominant step smoothening mechanidré]. To see how Eq.
hand side becomes negligible compared to the first, and th@) has to be modified to take this effect into account, we
evolution equation reduces 9= —(a/f,),. The solution note first that the second, relaxational term on the right-hand
(2) is singular near the maxima and minima, where it di-side can be rewritten in a geometrically covariant form as
verges as~ * yIn(L/|x—Xg|), Xg=0,£\4/2. (ous)x, Wherepw=Q vk is the step chemical potentigl6],

In Fig. 1, we show results of a numerical solution of Eq. k= —(1+ gi)*ngx is the step curvatures= [dx \/1+§X2
(1), starting from a small amplitude random initial condition. is the arclength along the step, and
To secure good numerical stability we used a fully implicit,
backward Euler algorithm for integration. The algorithm was 5.0
implemented on an adaptive grid in order to obtain sufficient
lateral resolution at the singular points.

A regular meander pattern of wavelength develops,
with an amplitude growing indefinitely ag. Closer inspec-
tion reveals that the sides of the profile follow the separable
solution(Fig. 2), while near the maxima and minima smooth
capsappear that approach pieces of the stationary solutions
(Fig. 3. This can be understood by noting that the mass “0.0
current along the sides of the profile vanishes a4 &tcord-
ing to Eq.(2), and therefore the stationarity condition is as- FIG. 3. The form of the caps for Eq.1) at t
ymptotically satisfied; we have checked that the deviation=500,1500,2500,3400. The dashed lines are the stationary solu-
from the stationary profile that is discernible in Fig. 3 van-tions corresponding to the maximum slope in the profile.
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is a mobility. The/ dependence in Eq3) reflects the as- 20071

sumed relaxation kineticg7], in which mass exchange be-
tween different parts of the step occurs through detachment
followed by diffusion over the terrace, reflection at the de- ¢ 00}
scending step, and reattachmérdse E of 18]). The factor
141+ gxz has a simple geometric interpretatiph7]: For a
deformed in-phase step train the distance to the nearest stey -20.0 |
measured along the step normalyis/1+ g”xz rather thary”.
For relaxation through step-edge diffusion the mobility is
clearly independent of the step distance, and is giveflBy -40.0
o=Dc./kgT, whereD, andc, denote the edge diffusion 0.0
coefficient and the equilibrium concentration of edge atoms,

respectively. When edge diffusion dominaté. o> o),

the appropriate nonlinear growth equation should thus be
given by Eq.(1) with the second term replaced by £4)y
=([1+ 2] Y25 uy), . This is confirmed by the explicit deri-
vation of Gillet et al. [12], who also studied the crossover
between attachment-detachment kinetics and edge diffusion
Here our primary goal is to gain further insight into the shape
selection mechanism. This has led us to consider the gener
alized class of equations
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which reduces to Eql) for n=1 and describes relaxation
through step edge diffusion whem=1/2 and g FIG. 4. Asymptotic form of the step profile far=1/2 (uppe)
=07DCcy/kgT. Below we discuss the properties of Ed) andn=0 (lower). Full line is the profile and the dashed line is the
for generaln, keeping in mind that the cases=1/2 andn  slope,. Circles represent the stationary solution, and diamonds,
=1 are of immediate physical relevance. the corresponding slope. The separable solution, still present in the
The separable solutiof2) becomes exact in a limit where sloped regions of the profile far=1/2, has vanished far=0.
the relaxation term in Eq(l) can be neglected, hence it
remains a valid asymptotic solution also of E4) for n>
—1/2; forn< — 1/2 the relaxation term can never be ignored.
The stationary solutions of E¢4) can be analyzed in terms

of the same mechanical analogy described above, the partic?éy P rofiles d'ertEJeS aA(hS)_~k:? S glﬁgd ng ttr? a.cortrltlelsponﬁ—
potential being given by U(m)=—a(1—m?)3> /(3 Ing increase of the cap height astIiSince this is still sma

—2n). For 1/2<n<3/2, the behavior is analogous to that compared to the overall profile amplitude, the caps neverthe-
for n=1: The wavelength\ (S) is a decreasing function of €SS appear as flat in the rescaled .sha/pé. (Fig. 2; a de-
the maximal slopeS, and wavelength and amplitude reach tailed view of the cap is shown in Fig).4This remains true

potential U(m) is harmonic and hence the wavelength
A(S)=M\., independent ofs. The amplitude of the station-

finite valuesA() = 88/a+/3—2n/(2n—1) and in the entire interval- 1/2<n<1/2, where the cap length)
remains finite and the cap height growst&s 2™, How-
I'[(2n+1)/4] ever a qualitative change in the profile evolution occurs at

A(®)=\2m(3-2n)(Bla) T[(2n+3)/4] () the valuen,~0.2283 where the asymptotic stationary wave-

length (5) becomes equal to the most unstable wavelength

for S—. Thus the asymptotic step profiles look similar to Ay, Which sets the lateral length scale in the early stages of
those generated by Eql), with the length of the cap de- growth. Forn<n; we expect to see an intermediatears-
creasing with increasing. As n— 3/2, the cap length, given eningregime in which the lateral length scale increases from
by A()/2, vanishes. Fon=3/2 we therefore expect true A\, to A(e). Coarsening to arbitrarily large length scales,
spike singularities to develop at the maxima and minima ofkimilar to what is observed in related evolution equations for
the profile. Using that the slope imposed by the separablene-dimensional unstable growfh9], sets in atn=—1/2,
solution(2) grows asS~ \t, we predict that the curvature at where Eqg.(5) diverges. Throughout the regime<n, the
the extrema diverges a&"~ %4, evolving profile is describable in terms of stationary solu-
A numerical solution for the case of edge diffusion ( tions, and the separable soluti®) no longer plays any role
=1/2) is shown in the lower panel of Fig. 1. For1/2 the  (Fig. 4).
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IV. PERSISTENCE OF THE INITIAL WAVELENGTH

Finally, we address the recent experimddilson surfaces 100 }
vicinal to Cu100), in which the meander wavelength was
measured as a function of temperature, and it was concluded
that the observed behaviorirgconsistentvith the theoretical
prediction for the linearly most unstable wavelengtf. C
Maroutian et al. [4] therefore proposed that the meander 5.0
wavelength is set by thaucleation lengthdescribing the
distance between the one-dimensional nuclei appearing on a
flat step in the early stage of growth, which can be consid-
erably larger than .

A necessary consistency requirement for this scenario is 0.0 . .
that an initially imposed meander wavelength-\ , persists 0.0 10.0 20.0
during the nonlinear evolution. We have therefore numeri- X

cally integrated Eqgs(1) and (4) starting from a sinusoidal FIG. 5. Spontaneous creation of an extra meander period for the

initial condition with varying wavelengtfz;. We do find  c5se of step-edge diffusiom& 1/2). The initial wavelength of the
that a range of wavelengths can be preserved during growthyqfjie s\, =25, 87a> 3\

This is reasonable in view of the analysis presented above,

which shows that asymptotic profiles, composed of the sepastationary solutions match needs further investigation; our
rable solution(2) and a stationary cap, can in principle be numerical work indicates the appearance of singularities in
constructed for an arbitrary wavelengtbee, e.g., Fig. )2 higher derivatives of. Also the dynamics in the singular
However, when\; exceeds\. by more than a factor of 3, so regimen=23/2 and in the coarsening regime<n, of Eq. (4)

that an additional meander fits between the maxima andeserves attention. Physically, it is imperative that the pre-
minima of the profile, the wavelength spontaneously dedictions of the one-dimensional equations for the in-phase
creases to a value negy (Fig. 5. This result contradicts the step meander be confirmed by more complete descriptions of
assumption of4] that initial wavelengths much larger than the growing surface, as provided by two-dimensional con-
A, persist, but it should not be overemphasized: Clearly, protinuum equations and Monte Carlo mod¢f, in order to
cesses that involve a change in the collective meander wavessess their ultimate relevance for the experimentally ob-
length may not be accurately described in a model that asserved morphologies.

sumes in-phase meandering from the outset.
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