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Asymptotic step profiles from a nonlinear growth equation for vicinal surfaces

Jouni Kallunki and Joachim Krug
Fachbereich Physik, Universita¨t GH Essen, 45117 Essen, Germany

~Received 19 May 2000!

We study a recently proposed nonlinear evolution equation describing the collective step meander on a
vicinal surface subject to the Bales-Zangwill growth instability@O. Pierre-Louiset al., Phys. Rev. Lett.80,
4221~1998!#. A careful numerical analysis shows that the dynamically selected step profile consists of sloped
segments, given by an inverse error function and steepening asAt, which are matched to pieces of a stationary
~time-independent! solution describing the maxima and minima. The effect of smoothening by step-edge
diffusion is included heuristically, and a one-parameter family of evolution equations is introduced that con-
tains relaxation by step-edge diffusion and by attachment-detachment as special cases. The question of the
persistence of an initially imposed meander wavelength is investigated in relation to recent experiments.

PACS number~s!: 05.70.Ln, 81.10.Aj, 68.35.Bs
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I. INTRODUCTION

Ten years ago, Bales and Zangwill@1# predicted that a
growing vicinal surface should undergo a step meande
instability when kinetic step-edge barriers suppress the
tachment of atoms to descending steps@2#. The instability
has meanwhile been observed in experiments@3,4# and
Monte Carlo simulations@5#, and a number of theoretica
studies have been devoted to the nonlinear evolution of
surface both in the presence@6# and absence@5,7# of desorp-
tion @8#.

Since linear stability analysis shows the in-phase mod
the collective step meander to be the most unstable@9#, the
two-dimensional surface morphology can be represented
a one-dimensional functionz(x,t) describing the displace
ment of the common step profile from the flat straight ref
ence configurationz50, with thex axis oriented along the
step @10#. For the case of infinite step-edge barrie
attachment-detachment kinetics and no desorption, the
linear evolution equation

z t52H azx

11zx
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~1!

was proposed in Ref.@7# ~subscripts denote derivatives!. It
can be derived from the Burton-Cabrera-Frank theory
growth on vicinal surfaces@11# using a singular multiscale
expansion@7,12# in e1/2, where e5VFl 2/D is the Pe´clet
number. HereF is the deposition flux,D, the in-plane surface
diffusion coefficient,l , the nominal step spacing, andV, the
atomic area. The coefficients in Eq.~1! are given bya
5VFl 2/2 andb5V2Dl gceq/kBT, with g and ceq refer-
ring to the step stiffness and the equilibrium adatom dens
respectively.

According to Eq.~1!, the straight step is linearly unstab
against perturbations with wavelengths larger thanlc

52pAb/a, with a fastest growing wavelengthlu5A2lc .
To explore the nonlinear regime, in Ref.@7# a numerical
integration of Eq.~1! was carried out that showed an increa
of the meander amplitude asAt at fixed wavelengthlu , as
well as the formation of spike singularities at maxima a
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minima ofz. The latter is surprising because the second te
on the right-hand side of Eq.~1! would be expected to sup
press such rapid variations of the step curvature.

Here we revisit the problem using a more accurate
merical algorithm@13#. We demonstrate that the step profi
remains smooth near maxima and minima, where it
proaches asymptotically astationary~time-independent! so-
lution of Eq.~1!, while the sides of the profile follow a sepa
rable solution with an amplitude of orderAt. The matching
of the two solutions occurs near the point of maximum slo
We further show heuristically how the effect of step-ed
diffusion can be included in the theory, and introduce a g
eralized evolution equation that contains edge diffusion a
attachment-detachment kinetics as special cases. Finally
address the question of to what extent an initially impos
meander wavelength different fromlu is preserved under the
time evolution. This is relevant in view of the recent expe
ments of Maroutianet al. @4#.

II. SHAPE SELECTION

Before presenting the numerical results, we recapitu
the two classes of analytic solutions to Eq.~1! that were
found in Ref.@7#. Stationarysolutions are obtained by settin
the mass current along the step@the quantity inside to curly
brackets on the right-hand side of Eq.~1!# to zero. In terms
of m(x)5zx /A11zx

2, the stationarity condition reduces t
Newton’s equationbd2m/dx252dU/dm for a classical
particle of mass b moving in the potential U(m)
52aA12m2, which can be solved by quadratures. O
thus obtains a one-parameter family of periodic profi
zS(x) that are most conveniently parametrized by t
maximum slopeS[maxxzx , and which have been describe
previously in the context of a different surface evolutio
equation@15#. The amplitudeA(S) is an increasing function
of S, while the wavelengthL(S) decreases with increasin
S, starting out atL(0)5lc . For S→` finite limiting
values A(`)5A8b/a, L(`)5A2pb/a G(3/4)/G(5/4)
'0.539 352 7 . . .lc are approached.

The separablesolution of interest reads@7,14#

z~x,t !52Aat erf21~124uxu/ls!, ~2!
6229 ©2000 The American Physical Society
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2ls/2,x,ls/2, where erf(z)5(2/Ap)*0
zdy e2y2

, and the
wavelengthls is arbitrary. Equation~2! solves Eq.~1! ex-
actly in the limit t→`, when the second term on the righ
hand side becomes negligible compared to the first, and
evolution equation reduces toz t52(a/zx)x . The solution
~2! is singular near the maxima and minima, where it
verges asz;6Aln(1/ux2x0u), x050,6ls/2.

In Fig. 1, we show results of a numerical solution of E
~1!, starting from a small amplitude random initial conditio
To secure good numerical stability we used a fully implic
backward Euler algorithm for integration. The algorithm w
implemented on an adaptive grid in order to obtain suffici
lateral resolution at the singular points.

A regular meander pattern of wavelengthlu develops,
with an amplitude growing indefinitely asAt. Closer inspec-
tion reveals that the sides of the profile follow the separa
solution~Fig. 2!, while near the maxima and minima smoo
capsappear that approach pieces of the stationary solut
~Fig. 3!. This can be understood by noting that the ma
current along the sides of the profile vanishes as 1/At accord-
ing to Eq.~2!, and therefore the stationarity condition is a
ymptotically satisfied; we have checked that the deviat
from the stationary profile that is discernible in Fig. 3 va

FIG. 1. The evolution of the step profile starting from a fl
initial condition with small random fluctuations. The upper figu
shows the case of attachment-detachment kinetics@Eq. ~1!# at times
t536,64,110,183; the lower figure, the case of edge diffusion@Eq.
~4! with n51/2] at times t520,60,112,200. Subsequent profil
have been shifted in thez direction. In all figures spatial variable
have been scaled bylc/2p5Ab/a and time byb/a2.
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ishes as 1/At. Since the slope of Eq.~2! increases monotoni
cally upon approaching an extremum while it decreases
the stationary profiles, the matching of the two solutions
curs near the point of maximum slope. Fort→` the slope of
the separable solution diverges, hence the cap profile
proaches the limiting stationary solutionz`(x), and the
length of the cap becomesL(`)/2. The rescaled step profil
z(x,t)/At approaches an invariant shape in which the c
appears as a flat facet. The wavelengthls of the separable
solution depends on the cap length and on the total mea
wavelengthl, and is fixed by mass balance requireme
@12#; for large total wavelengthls→l ~see Fig. 2!.

III. STEP-EDGE DIFFUSION AND A GENERALIZED
EVOLUTION EQUATION

On many fcc metal surfaces, diffusion along step edge
the fastest kinetic process, which therefore provides
dominant step smoothening mechanism@16#. To see how Eq.
~1! has to be modified to take this effect into account,
note first that the second, relaxational term on the right-h
side can be rewritten in a geometrically covariant form
(sms)x , wherem5Vgk is the step chemical potential@16#,
k52(11zx

2)23/2zxx is the step curvature,s5*dx A11zx
2

is the arclength along the step, and

FIG. 2. The asymptotic form of the scaled profilez/At for Eq.
~1! ~long dashes! and Eq.~4! with n51/2 ~short dashes!. Full line is
the separable solution~2! with ls equal to the total meander wave
lengthl518Ab/a'2lu .

FIG. 3. The form of the caps for Eq.~1! at t
5500,1500,2500,3400. The dashed lines are the stationary s
tions corresponding to the maximum slope in the profile.
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s5
DVceq

kBT

l

A11zx
2

~3!

is a mobility. Thel dependence in Eq.~3! reflects the as-
sumed relaxation kinetics@7#, in which mass exchange be
tween different parts of the step occurs through detachm
followed by diffusion over the terrace, reflection at the d
scending step, and reattachment~case E of@18#!. The factor
1/A11zx

2 has a simple geometric interpretation@17#: For a
deformed in-phase step train the distance to the nearest
measured along the step normal, isl /A11zx

2 rather thanl .
For relaxation through step-edge diffusion the mobility

clearly independent of the step distance, and is given by@18#

s̃5DeVce/kBT, whereDe andce denote the edge diffusion
coefficient and the equilibrium concentration of edge atom
respectively. When edge diffusion dominates~i.e. s̃@s),
the appropriate nonlinear growth equation should thus
given by Eq.~1! with the second term replaced by (s̃ms)x

5(@11zx
2#21/2s̃mx)x . This is confirmed by the explicit deri

vation of Gillet et al. @12#, who also studied the crossove
between attachment-detachment kinetics and edge diffus
Here our primary goal is to gain further insight into the sha
selection mechanism. This has led us to consider the ge
alized class of equations

z t52H azx

11zx
2

1
b

~11zx
2!n F zxx

~11zx
2!3/2G

x
J

x

, ~4!

which reduces to Eq.~1! for n51 and describes relaxatio
through step edge diffusion whenn51/2 and b
5V2Deceg/kBT. Below we discuss the properties of Eq.~4!
for generaln, keeping in mind that the casesn51/2 andn
51 are of immediate physical relevance.

The separable solution~2! becomes exact in a limit wher
the relaxation term in Eq.~1! can be neglected, hence
remains a valid asymptotic solution also of Eq.~4! for n.
21/2; for n<21/2 the relaxation term can never be ignore
The stationary solutions of Eq.~4! can be analyzed in term
of the same mechanical analogy described above, the pa
potential being given by U(m)52a(12m2)3/22n/(3
22n). For 1/2,n,3/2, the behavior is analogous to th
for n51: The wavelengthL(S) is a decreasing function o
the maximal slopeS, and wavelength and amplitude rea
finite valuesA(`)5A8b/aA322n/(2n21) and

L~`!5A2p~322n!~b/a!
G@~2n11!/4#

G@~2n13!/4#
~5!

for S→`. Thus the asymptotic step profiles look similar
those generated by Eq.~1!, with the length of the cap de
creasing with increasingn. As n→3/2, the cap length, given
by L(`)/2, vanishes. Forn>3/2 we therefore expect tru
spike singularities to develop at the maxima and minima
the profile. Using that the slope imposed by the separa
solution~2! grows asS;At, we predict that the curvature a
the extrema diverges ast (2n23)/4.

A numerical solution for the case of edge diffusionn
51/2) is shown in the lower panel of Fig. 1. Forn51/2 the
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potential U(m) is harmonic and hence the waveleng
L(S)5lc , independent ofS. The amplitude of the station
ary profiles diverges asA(S); ln S, leading to a correspond
ing increase of the cap height as lnt. Since this is still small
compared to the overall profile amplitude, the caps never
less appear as flat in the rescaled shapez/At ~Fig. 2; a de-
tailed view of the cap is shown in Fig. 4!. This remains true
in the entire interval21/2,n<1/2, where the cap length~5!
remains finite and the cap height grows ast (122n)/4. How-
ever a qualitative change in the profile evolution occurs
the valuenc'0.2283 where the asymptotic stationary wav
length ~5! becomes equal to the most unstable wavelen
lu , which sets the lateral length scale in the early stage
growth. Forn,nc we expect to see an intermediatecoars-
eningregime in which the lateral length scale increases fr
lu to L(`). Coarsening to arbitrarily large length scale
similar to what is observed in related evolution equations
one-dimensional unstable growth@19#, sets in atn521/2,
where Eq.~5! diverges. Throughout the regimen,nc the
evolving profile is describable in terms of stationary so
tions, and the separable solution~2! no longer plays any role
~Fig. 4!.

FIG. 4. Asymptotic form of the step profile forn51/2 ~upper!
andn50 ~lower!. Full line is the profile and the dashed line is th
slopezx . Circles represent the stationary solution, and diamon
the corresponding slope. The separable solution, still present in
sloped regions of the profile forn51/2, has vanished forn50.
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IV. PERSISTENCE OF THE INITIAL WAVELENGTH

Finally, we address the recent experiments@4# on surfaces
vicinal to Cu~100!, in which the meander wavelength wa
measured as a function of temperature, and it was conclu
that the observed behavior isinconsistentwith the theoretical
prediction for the linearly most unstable wavelengthlu .
Maroutian et al. @4# therefore proposed that the meand
wavelength is set by thenucleation lengthdescribing the
distance between the one-dimensional nuclei appearing
flat step in the early stage of growth, which can be cons
erably larger thanlu .

A necessary consistency requirement for this scenari
that an initially imposed meander wavelengthl i.lu persists
during the nonlinear evolution. We have therefore nume
cally integrated Eqs.~1! and ~4! starting from a sinusoida
initial condition with varying wavelengthl i . We do find
that a range of wavelengths can be preserved during gro
This is reasonable in view of the analysis presented ab
which shows that asymptotic profiles, composed of the se
rable solution~2! and a stationary cap, can in principle b
constructed for an arbitrary wavelength~see, e.g., Fig. 2!.
However, whenl i exceedslc by more than a factor of 3, so
that an additional meander fits between the maxima
minima of the profile, the wavelength spontaneously
creases to a value nearlu ~Fig. 5!. This result contradicts the
assumption of@4# that initial wavelengths much larger tha
lu persist, but it should not be overemphasized: Clearly, p
cesses that involve a change in the collective meander w
length may not be accurately described in a model that
sumes in-phase meandering from the outset.

V. OUTLOOK

In conclusion, we have described an unusual shape se
tion scenario for a class of physically motivated grow
equations. A number of issues remain to be clarified. Ma
ematically, the behavior in the region where separable
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stationary solutions match needs further investigation;
numerical work indicates the appearance of singularities
higher derivatives ofz. Also the dynamics in the singula
regimen>3/2 and in the coarsening regimen,nc of Eq. ~4!
deserves attention. Physically, it is imperative that the p
dictions of the one-dimensional equations for the in-ph
step meander be confirmed by more complete description
the growing surface, as provided by two-dimensional co
tinuum equations and Monte Carlo models@5#, in order to
assess their ultimate relevance for the experimentally
served morphologies.
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FIG. 5. Spontaneous creation of an extra meander period for
case of step-edge diffusion (n51/2). The initial wavelength of the
profile is l i525Ab/a.3lc .
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